Zenón de Elea
Réplica a la paradoja
Una interpretación moderna, basada en el cálculo infinitesimal que era desconocido en época de Zenón, propone que Aquiles realmente alcanzará a la tortuga, ya que, como demostró el matemático escocés James Gregory (1638-1675), una suma de infinitos términos puede tener un resultado finito. Los tiempos en los que Aquiles recorre la distancia que lo separa del punto anterior en el que se encontraba la tortuga son cada vez más y más pequeños, y su suma da un resultado finito, que es el momento en que alcanzará a la tortuga.
Otra manera de plantearlo es que Aquiles puede fijar un punto de llegada que está metros delante de la tortuga en vez del punto en que ella se encuentra. Ahora, en vez de cantidades infinitas, tenemos dos cantidades finitas con las cuales se puede calcular un intervalo finito de tiempo en el cual Aquiles pasará a la tortuga.
Otra forma de encarar el problema es huyendo del análisis infinitesimal, cuyo planteamiento matemático se desconocía en tal época, para reconvertirlo en análisis discreto: Filípides -el campeón olímpico al que se ordenó que abandonara las filas del ejército para comunicar a Atenas la victoria conseguida sobre los persas en la playa de Marathon- no recorre espacios infinitesimales, sino discretos, que podemos denominar zancada. A cada zancada le podemos asignar un espacio concreto. Por ejemplo podemos suponer que Filípides recorre un metro a cada zancada. Ahora el problema se reduce a la comparación de velocidades relativas: calcular en qué momento la última zancada de Filípides recorrerá una distancia mayor a la que haya podido recorrer la tortuga en el mismo tiempo, incluso aunque no sepamos definir la distancia exacta que la tortuga recorrería. Es decir, basta que una de las variables sea discreta y que podamos suponer que, en determinado tiempo, puede superar a las distancias infinitesimales, para demostrar, incluso teóricamente, que el movimiento existe.
Lo que sí es seguro que la solución no puede salir de una argumentación distinta a la original, sino del estudio del enunciado original, lugar en el que se encuentra el error, mal entendido, o paradoja.
La dicotomía
Esta paradoja, conocida como argumento o paradoja de la dicotomía, es una variante de la anterior.
Zenón está a ocho metros de un árbol. Llegado un momento, lanza una piedra, tratando de dar al árbol. La piedra, para llegar al objetivo, tiene que recorrer antes la primera mitad de la distancia que lo separa de él, es decir, los primeros cuatro metros, y tardará un tiempo (finito) en hacerlo. Una vez llegue a estar a cuatro metros del árbol, deberá recorrer los cuatro metros que le quedan, y para ello debe recorrer primero la mitad de esa distancia. Pero cuando esté a dos metros del árbol, tardará tiempo en recorrer el primer metro, y luego el primer medio metro restante, y luego el primer cuarto de metro... De este modo, la piedra nunca llegará al árbol.
Es posible utilizar este razonamiento, de forma análoga, para «demostrar» que la piedra nunca llegará a salir de la mano de Zenón.
Al igual que en la paradoja de Aquiles y la tortuga, es cierto que el número de puntos recorridos (y tiempos invertidos en hacerlo, según el argumento de la paradoja) es infinito, pero su suma es finita y por tanto la piedra llegará al árbol.
La paradoja de la piedra puede ser planteada matemáticamente usando series infinitas. Las series infinitas son sumas cuyo término variante (que puede tomar cualquier valor numérico) va hasta el infinito. Las series infinitas pueden ser convergentes o divergentes, en el primer caso la suma de las mismas es un número finito, en el segundo no.
Como introducción al concepto de serie, se muestran un par de series sencillas y luego se aplica esa formulación a la paradoja de Zenón.
Para sumar todos los números desde 1 a infinito:

Para sumar todos los números al cuadrado desde 1 a infinito:

Para plantear una serie que modele la paradoja de la piedra se hace una serie que sume la mitad, luego la mitad de la mitad, luego la mitad de la mitad de la mitad y así, hasta el infinito:

La serie que se plantea es una serie geométrica, por lo que su suma puede ser calculada con la siguiente fórmula:
Suma =

En la sumatoria de la paradoja de Zenón, «a» es
y «r» es la razón de incremento (producto), que es
. Sustituyendo esos valores en la fórmula de suma se tiene:Suma =

Entonces se tiene que la suma de la mitad de «algo» más la mitad de la mitad de «algo» y así sucesivamente da 1, «algo» completo. Esto también es aplicable a la paradoja, la mitad de la distancia, más la mitad de la mitad de la distancia y así sucesivamente da como resultado la distancia entera. Por lo tanto se concluye que, recorriendo infinitas mitades es posible recorrer toda la distancia.


